MATH 42-NUMBER THEORY PROBLEM OF THE DAY #9 DUE TUESDAY, MARCH 8, 2011

1. For $a \in U_m$, we'll call *n* the order of *a* if *n* is the smallest natural number such that $a^n = 1$ in U_m . For example, in U_7 , the order of 2 is 3 because $2^1 = 2$, $2^2 = 4$, $2^3 = 1$. Therefore, even though $2^6 = 1$ (we know this from Fermat's little theorem), 3 < 6 so the order of 2 is 3. We call $a \in U_m$ a generator if every element of U_m can be expressed as a power of *a*-that is, if the powers of *a* run through all elements of U_m . For example, 3 is a generator of U_7 since $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$ and $3^6 = 1$.

Look at your power tables from POTD 7. What are the orders of each of the elements in U_7 and U_{15} ? Do U_7 and U_{15} have generators? For m = 4, 5, 8, 11, 16, which U_m have a generator? Describe any patterns you see.